Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18–40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.


  1. Galderisi S, Mucci A, Dollfus S, Nordentoft M, Falkai P, Kaiser S, et al. EPA guidance on assessment of negative symptoms in schizophrenia. Eur Psychiatry. 2021;64(1):e23.
  2. Kantrowitz JT. How do we address treating the negative symptoms of schizophrenia pharmacologically? Expert Opin Pharmacother. 2021;16:1–3.
  3. Mucci A, Galderisi S, Gibertoni D, Rossi A, Rocca P, Bertolino A, et al. Factors associated with real-life functioning in persons with schizophrenia in a 4-year follow-up study of the Italian network for research on psychoses. JAMA Psychiat. 2021;78(5):550–9.
  4. Fleischhacker WW, Podhorna J, Groschl M, Hake S, Zhao Y, Huang S, et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry. 2021;8(3):191–201.
  5. Taylor M, Jauhar S. Are we getting any better at staying better? The long view on relapse and recovery in first episode nonaffective psychosis and schizophrenia. Therap Adv Psychopharmacol. 2019;9:2045125319870033.
  6. Kantrowitz JT. Additional perspective on cariprazine and negative symptoms. Exp Opin Pharmacotherapy. 2021;2:1–2.
  7. Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet. 2019;394(10202):939–51.
  8. Gomes FV, Grace AA. Beyond dopamine receptor antagonism: new targets for schizophrenia treatment and prevention. Int J Mol Sci. 2021;22(9):4467.
  9. Kozak R, Kiss T, Dlugolenski K, Johnson DE, Gorczyca RR, Kuszpit K, et al. Characterization of PF-6142, a novel, non-catecholamine dopamine receptor D1 agonist, in murine and nonhuman primate models of dopaminergic activation. Front Pharmacol. 2020;11:1005.
  10. Bitter I, Lieberman JA, Gaudoux F, Sokoloff P, Groc M, Chavda R, et al. Randomized, double-blind, placebo-controlled study of F17464, a preferential D3 antagonist, in the treatment of acute exacerbation of schizophrenia. Neuropsychopharmacology. 2019;44(11):1917–24.
  11. Davidson M, Saoud J, Staner C, Noel N, Luthringer E, Werner S, et al. Efficacy and safety of MIN-101: a 12-week randomized, double-blind, placebo-controlled trial of a new drug in development for the treatment of negative symptoms in schizophrenia. Am J Psychiatry. 2017;174(12):1195–202.
  12. Kantrowitz JT, Grinband J, Goff DC, Lahti AC, Marder SR, Kegeles LS, et al. Proof of mechanism and target engagement of glutamatergic drugs for the treatment of schizophrenia: RCTs of pomaglumetad and TS-134 on ketamine-induced psychotic symptoms and pharmacoBOLD in healthy volunteers. Neuropsychopharmacology. 2020;45(11):1842–50.
  13. Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N Engl J Med. 2021;384(8):717–26.
  14. Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets. 2018;22(6):513–26.